

Why this meeting?

Background

- Research papers on experiments and theories of buffer size.
- Yet, no universal agreement on how big router buffers should be, and why.
- Personal confession: I have no idea what the general answer is
 - Incast
 - Data centers
 - For specific environments, like financial networks, SLAs, HPC, ...

Our goal

- A workshop in October/November 2019: "How Big Should Buffers be in Switches and Routers?"
- Measurements: Invite operators of large networks to perform experiments in their networks.
- Theory: Invite researchers to develop theory explaining, supporting (challenging?) measurements.
- Report results publicly at workshop.
- Compare notes and write a report together, sharing our results to the world.

Organizers

- 1. Neda Beheshti
- 2. Christophe Diot
- 3. Tom Edsall
- 4. Nasser El-Aawar
- 5. Yashar Ganjali
- 6. Nick McKeown
- 7. Bruce Spang

Local logistics: Andi Villanueva

Who we are

- Speakers from 14 companies and 2 universities
 - Network operators, cloud companies, router vendors, chip vendors
- Attendees from 22 companies and 2 universities
- Let's introduce ourselves...

Schedule for the day

10.30am – 1.30pm

Session 1: Network Operators

- Neda Beheshti Facebook
- Lincoln Dale Google
- TY Huang Netflix
- Honqqiang Liu Alibaba
- Ken Duell AT&T
- Joel Jaeggli Fastly

[12.00 – 12.30 Lunch]

- Simon Leinen Switch
- Bob Briscoe CableLabs
- Chuanxiong Guo Bytedance
- Igor Gashinsky Oath

1.45pm – 2.45pm

Session 2: Technology Providers

- Parvin Taheri Cisco
- Francois Labonte Arista
- Golan Schzukin Dune/BCM
- Chang Kim Barefoot

3.00pm - 4.00pm

Session 3: Discussion

- Conclusions Neda, Bruce, Nasser
- Actions and Next Steps Yashar, Nick

A brief history of buffer size

About This Animation

Controls: Left Arrow = Slow, Down Arrow = Medium, Right Arrow = Fast

cwnd

 $B = 2T \times C$

Zoom View

Single AIMD flow: 100% Throughput

1. If
$$\widehat{W} \to \frac{\widehat{W}}{2}$$
 then $B \ge 2T \times C$
2. If $\widehat{W} \to \frac{\widehat{W}}{k}$ then $B \ge 2T(k-1) \times C$
3. If $k = 1 + \frac{a}{2T}$ then $B \ge aC$
Example: k = 1.5
 $B \ge 500Mbits$
Example: k = 1.4
 $B \ge 500Mbits$
Example: a = $\frac{1}{100}$
 $B \ge 50Mbits$
i.e. if end host knows 2T, buffer size is independent of RTT

Synchronized Flows

Aggregate window of all the flows has same dynamics Therefore buffer occupancy has same dynamics $Rule-of-thumb B \ge 2T \times C \ still \ holds.$

Desynchronized TCP Flows

Many AIMD flows: 100% Throughput

 $\boxed{A} \xrightarrow{} \boxed{C} \xrightarrow{} \hline{C} \xrightarrow{} \hline$

Buffer Sizing Experiments Are Challenging

Testbed experiments:

- Generate realistic traffic with high accuracy
- Explore a very large space (load, traffic shape, ...)

Real network experiments:

- Packet drops *may* violate SLAs
- Adjusting buffers not straight forward (device limitations)

Both:

• Accurate measurement of performance metrics not straight forward

Buffer Sizing Experiments

Small Buffers

- Stanford University dorm network
- University of Wisconsin
- Internet2
- Level 3 Communications

Tiny Buffers

- Internet2
- Sprint Advanced Technology Lab
- University of Toronto

Level 3 Communications Experiments

- High link utilization
- Long duration (about two weeks)
- Buffer sizes 190ms (250K packets), 10ms (10K packets), 2.5ms (2500 packets), 1ms (1000 packets)
- Load balancing over 3 links (2.5 Gb/s each)

Drop vs. Load, Buffer = 190ms, 10ms

Drop vs. Load, Buffer = 1ms

Relative Link Utilization

Buffer Sizing Experiments

Small Buffers

- Stanford University dorm network
- University of Wisconsin
- Internet2
- Level 3 Communications

Tiny Buffers

- Internet2
- Sprint Advanced Technology Lab
- University of Toronto

Tiny Buffers Experiments

- Network of NetFPGA-based switches (20-100 machines)
 - 4 GigE interfaces
 - Programmable
- Accurate packet injections
- Complete TCP stack
- Accurate buffer size control
- No hidden buffers
- Added feature to measure queue occupancy time series

Experiment Results

We measured:

- Throughput
- Flow completion times
- Packet drop rates
- ...

For various combinations of:

- Input traffic
- Delays
- Buffer sizes
- ...

Results: Pacing and Buffer Size

Experiment Conclusions

- Small and tiny buffer experiments inline with theoretical predictions
- Small buffers: no change needed
- Tiny buffers: assumptions are extremely important
 - Necessary to guarantee them all over the network
 - We need support from network components (both software and hardware)

Summary

Buffer Size

Some ground rules for the day

- 40 different experiences, 40 preconceived notions. Me too.
- Let's check preconceptions at the door: None of us know for sure.

Speakers: Please keep you to 15 minutes, including Q&A

- This afternoon, two discussion sessions:
 - 1. Conclusions: What do we take away from today?
 - 2. Actions: What are the next steps?

Schedule for the day

10.30am – 1.30pm

Session 1: Network Operators

- Neda Beheshti Facebook
- Lincoln Dale Google
- TY Huang Netflix
- Honqqiang Liu Alibaba
- Ken Duell AT&T
- Joel Jaeggli Fastly

[12.00 – 12.30 Lunch]

- Simon Leinen Switch
- Bob Briscoe CableLabs
- Chuanxiong Guo Bytedance
- Igor Gashinsky Oath

1.45pm – 2.45pm

Session 2: Technology Providers

- Parvin Taheri Cisco
- Francois Labonte Arista
- Golan Schzukin Dune/BCM
- Chang Kim Barefoot

3.00pm - 4.00pm

Session 3: Discussion

- Conclusions Neda, Bruce, Nasser
- Actions and Next Steps Yashar, Nick